
Open contest in programming 11/08/2003 Tasks for the beginners’ group

1. Sequence 5 seconds 20 points

You are given a sequence a1, a2, . . . , aN . The value of each item is the index of the item to which
you can move from that item.

Write a program to determine whether it is possible, starting from the first item, to return to
the same item.

Input. On the first line of the text file JADA.SIS is integer N (1 6 N 6 100,000) — the number
of items in the sequence. On the second line of the file are N integers, separated by spaces —
the items a1, a2, . . . , aN .

Output. The first line of the text file JADA.VAL should contain the word JAH, if it is possible
to return to the first item, or the word EI, if this is not possible. If it is possible to return, the
second line of the file should contain the minimal number of steps required to do so.

Example. JADA.SIS
4
2 3 1 1

JADA.VAL
JAH
3

Remark. The moves are as follows: a1 = 2→ a2 = 3→ a3 = 1→ a1, total 3 steps.

Example. JADA.SIS
4
2 3 2 1

JADA.VAL
EI

Remark. The moves are as follows: a1 = 2→ a2 = 3→ a3 = 2→ a2 = 3→ a3 = 2→ . . . and
so on forever.

Grading. Points for negative test cases are awarded only to programs that solve correctly at
least one positive test case.

2. Relatives 5 seconds 40 points

There are N guests invited to a party, and some of them are known to be relatives.

Of course, the relationship of being a relative is symmetric (that is, if A is a relative of B then
B is a relative of A) and transitive (that is, if A is a relative of B and B is a relative of C then
A is a relative of C).

Write a program to find a group of maximal possible size in which no two persons are relatives
of each other.

Input. On the first line of the text file SUG.SIS are two integers, N and K (1 6 N 6 100,
0 6 K 6 N(N − 1)/2), separated by a space, where N is the number of guests and K is
the number of explicitly given facts about relationships between them. All guests are labelled
1 . . . N . Each of the following K lines contain two integers, Ai and Bi (1 6 Ai 6 N , 1 6 Bi 6 N),
separated by a space, meaning that the guests Ai and Bi are relatives.

Output. The first line of the text file SUG.VAL should contain an integer M , the maximal size
of a group of non-relatives. The second line should contain M integers, separated by spaces —
labels of the guests in the group. If there are multiple groups with the maximal size, any one of
them could be listed.

Example. SUG.SIS
5 3
1 2
3 4
5 1

SUG.VAL
2
1 3

1/2



Open contest in programming 11/08/2003 Tasks for the beginners’ group

3. The crontab file open tests 40 points

In a computer system, it is often necessary to perform some actions according to a given schedule.
In Unix-like operating systems, this service is offered by a program called crond (Greek chronos
‘time’ and dæmon ‘spirit’) that reads the schedule from a file called crontab.

Each line of the crontab file consists of six fields separated from each other by spaces or tabs.
Five first fields (which may not contain spaces or tabs) describe the schedule of performing an
action and the last one contains the command to be executed for performing this action.

The fields that describe the schedule are: minutes (0 . . . 59), hours (0 . . . 23), dates (1 . . . 31),
months (1 . . . 12), and weekdays (0 . . . 6, where 0 = Sunday, 1 = Monday, . . . , 6 = Saturday).
Each field may contain a star (*), which means all valid values, or a comma-separated list. In
a list, each item may be either a valid value or two values separated by a dash (-), meaning all
valid values from the first value to the second one (the bondary values themselves included).

Generally, the command is executed at times satisfying all the given conditions. For example,
if the minutes field contains 0,30 and hours field contains 12-14, the command is executed at
12:00, 12:30, 13:00, 13:30, 14:00, and 14:30. The date and weekday fields are an exception. If
both of these fields contain a non-star, the command is executed at times meeting either of the
conditions. For example, if the date field contains 10,20 and the weekday field contains 5, the
command is executed on the 10th and 20th day of month (regardless of the weekday) and every
Friday (regardless of the date).

You are given a list of commands and the times when they should be executed. The task is to
create a crontab file scheduling all the given commands for execution at specified times with as
few lines as possible. If several commands are to be executed at the same time, they are really
executed in the order of their entries in the crontab file. Your reconstructed crontab should
preserve that order.

Input. Each line of the text file CRON.SIS contains three space-separated fields: the date in
the form DD.MM.YYYY, the time in the form HH:MM, and the command to be executed on
this date at this time. The file is complete: it lists all actions to be performed from the moment
specified on the first line to the moment specified on the last line. The lines in the file are given
in chronological order.

Output. The text file CRON.VAL should contain the crontab to make crond to execute exactly
the desired commands in the given timeframe. What would happen before the first or after the
last moment specified in the input file does not matter.

Example. CRON.SIS
20.10.2003 12:00 test
20.10.2003 13:00 test
20.10.2003 14:00 test
20.10.2003 17:00 test
21.10.2003 12:00 test

CRON.VAL
0 12-14,17 * * * test

Remark. The crontab given in the output file executes the command test every day at 12:00,
13:00, 14:00, and 17:00. Thus the list of actions performed from 12:00 on 20.10.2003 to 12:00
on 21.10.2003 matches the list given in the input file. Therefore, the given crontab meets the
requirements, even though the command test is also executed before 20.10.2003 and after 12:00
on 21.10.2003, in particular at 13:00, 14:00, and 17:00 on 21.10.2003.

Grading. In this task, you are given 10 specific input files named cron01.sis to cron10.sis
and you should, as your solution, submit the corresponding output files named cron01.val to
cron10.val. It is not necessary to submit a program. Every correct output file receives points
inversely proportional to the ratio between the number of lines in this file and the best solution
submitted (that is, a file with twice the number of lines receives half the points).

2/2


