1. Дерево каталогов

1 секунда

20 очков

Написать программу, которая получает описание дерева каталогов, где вложенность каталогов по-казана отступами, и выводит представление этого дерева, где для большей наглядности помимо отступов используются псевдографические символы.

Входные данные. На первой строке текстового файла kata.sis дано количество каталогов в дереве N ($1 \le N \le 1000$) а на каждой из следующих N строк — имя каталога, перед которым также может быть состоящий из пробелов отступ. Каждый каталог с отступом является дочерним каталогом ближайшего предыдущего каталога с меньшим отступом. Можно предполагать, что ни одно имя каталога не длиннее 50 знаков, а ни одна стока файла (включая отступ) не длиннее 250 знаков. Имя каталога не может содержать пробелов.

Выходные данные. В текстовый файл kata.val вывести в точности N строк: представление того же самого дерева каталогов, где шаг отступа равен в точности двум пробелам, а вложенность каталогов изображена графически, как в примере, приведенном ниже. Для представления вертикального отрезка линии использовать символ | (код 124), для горизонтальных отрезков символ - (код 45), в месте ответвления линий символ + (код 43), а в месте сгиба линии (без дополнительных ответвлений) символ * (код 42). Каталоги должны быть перечислены в том же порядке, в каком они были заданы во входном файле.

Пример.	kata.sis 3 Alpha Bravo Charlie	kata.val Alpha *-Bravo *-Charlie
Пример.	kata.sis 8 Alpha Bravo Charlie Delta Echo Foxtrot Golf Hotel	kata.val Alpha +-Bravo +-Charlie +-Delta *-Echo *-Foxtrot Golf *-Hotel

Оценивание. В тестах с суммарной стоимостью 10 очков шаг отступа во входных данных равен в точности одному пробелу.

2. Марафон 1 секунда 40 очков

Зрительные места у трассы, где проводится марафон, пронумерованы $1\dots N$ по направлению от старта к финипу. Часть мест уже занята. K друзей хотят пойти смотреть соревнование вместе, и при этом находиться как можно ближе друг к другу.

Написать программу, которая подберет для друзей наилучшее расположение среди свободных мест. Оценкой качества расположения друзей является сумма разниц номеров занятых мест для каждой пары друзей в группе (чем она меньше — тем лучше).

Входные данные. На первой строке текстового файла mare.sis дано общее количество зрительных мест N ($1 \le N \le 1\,000\,000$), количество уже занятых мест M ($0 \le M < N$), и количество друзей K ($1 \le K \le N - M$). На второй строке дано M разделенных пробелами чисел: номера уже занятых зрительных мест в порядке возрастания.

Выходные данные. На единственной строке текстового файла mare.val вывести два целых числа: минимальный и максимальный номера мест, которые должны занять друзья. Если найдется несколько одинаково хороших расположений, вывести то из них, которое ближе к финишу (где используются большие номера мест).

Пример.	mare.sis	mare.val
	8 4 3	4 7
	2368	

Друзья должны купить билеты на места 4, 5 и 7 (место 6 уже занято). Для мест 4 и 5 разница номеров равна 1, для мест 5 и 7 разница равна 2, а для мест 4 и 7 разница равна 3. Сумма всех трех попарных разниц (которая и является оценкой качества расположения друзей) равна 6.

Оценивание. В тестах с суммарной стоимостью 20 очков $N\leqslant 30\,000$ и $K\leqslant 300$. Среди них, в тестах с суммарной стоимостью 10 очков $N\leqslant 1000$ и $K\leqslant 100$.

3. Сочетания 1 секунда 40 очков

Как известно из комбинаторики, число подмножеств размером K элементов у множества, содержащего N элементов, равно

$$C(N,K) = \frac{N!}{K! \cdot (N-K)!},$$

где N! обозначает произведение $1 \cdot 2 \cdot \ldots \cdot (N-1) \cdot N$, а также по определению 0! = 1.

Написать программу, которая для заданных целых чисел N, K и M находит максимальное целое число L, при котором C(N,K) делится на M^L .

Входные данные. На первой строке текстового файла komb.sis находятся целые числа N, K и M $(0 \leqslant K \leqslant N < 2^{63}, 2 \leqslant M \leqslant 10^{12}).$

Выходные данные. На единственную строку текстового файла komb.val вывести искомое L. Можно считать, что ответ попадает в область значений 64-битного целого числа со знаком.

$$C(6,3)=6!/(3!\cdot 3!)=720/(6\cdot 6)=20$$
, что делится на $2^2=4$, но не делится на $2^3=8$.

Оценивание. В тестах с суммарной стоимостью 20 очков $C(N,K) < 2^{63}$. Из них в тестах с суммарной стоимостью 10 очков $N! < 2^{63}$.

1. Филателист 1 секунда 20 очков

У филателиста возникло подозрение, что среди его марок есть повторяющиеся экземпляры. Так как марок много, то искать среди них повторяющиеся вручную тяжело. Вместо этого филателист выложил все марки на стол в несколько рядов, сфотографировал цифровым фотоаппаратом, и надеется теперь использовать для поиска повторов компьютер.

Написать программу, которая найдет на фотографии все комплекты идентичных марок.

Входные данные. На первой строке текстового файла filg.sis дано количество рядов R $(1 \le R \le 50)$ и колонок V $(1 \le V \le 10)$ марок, а также высота K $(1 \le K \le 30)$ и ширина L $(1 \le L \le 30)$ изображения каждой марки. На каждой из следующих $K \cdot R$ строк записано в точности $L \cdot V$ символов. Все это представляет из себя изображение выложенных на столе друг рядом с другом марок, где каждой марке соответствует блок из $K \times L$ символов. Две марки считать одинаковыми, если их изображения идентичны (если при поточечном сопоставлении изображений двух марок, хотя бы один символ различается, марки нужно считать разными). Большие и маленькие буквы считать разными символами.

Выходные данные. В текстовый файл filg.val вывести найденные наборы повторяющихся марок. Каждую марку следует выводить в виде координат ее ряда и колонки на столе. Ряды нумеруются сверху вниз $1 \dots R$, а колонки — слева направо $1 \dots V$. Координаты всех одинаковых марок вывести одну за другой на одной строке. Координаты разных марок должны оказаться на разных строках. Порядок перечисления наборов и марок в каждом наборе не имеет значения.

Пример.	filg.sis	filg.val
	1 3 8 8	1 1
	aaaaaaabbbbbbbbbccccccc	1 2
	aaaaaaabbbbbbbbbccccccc	1 3
	aaaaaaabbbbbbbbbccccccc	

Все марки различны, поэтому каждая марка выведена на отдельной строке.

Пример.	filg.sis	filg.val
	2 3 8 8	1 1
	aaaaaaabbbbbbbbbccccccc	1 2 2 3
	aaaaaaabbbbbbbbbccccccc	1 3
	aaaaaaabbbbbbbbbccccccc	2 1
	aaaaaaabbbbbbbbbccccccc	2 2
	aaaaaaabbbbbbbbbccccccc	
	dddddddaaaaaaabbbbbbbbb	
	dddddddaaaaaaabbbbbbbb	
	dddddddaaaaaaabbbbbbbb	
	dddddddaaaxxaaabbbbbbbb	
	$\tt dddddddaaaxxaaabbbbbbbb$	
	dddddddaaaaaaabbbbbbbbb	
	dddddddaaaaaaabbbbbbbb	
	dddddddaaaaaaabbbbbbbb	

Марка в 1-м ряду на 2-й колонке такая же, как и марка во 2-м ряду на 3-й колонке, поэтому они выведены на одной строке.

2. Последовательность

1 секунда

30 очков

Написать программу, которая принимает N натуральных чисел и находит максимальное число, которое можно получить, записав данные числа друг за другом в каком-то порядке.

Входные данные. На первой строке текстового файла jada.sis находится целое число N ($1 \le N \le 1000$), а на второй строке находятся N разделённых пробелами неотрицательных целых чисел со значениями до $1\,000\,000$.

Выходные данные. На единственную строку текстового файла jada.val вывести искомое максимальное число.

Пример.

jada.sis jada.val 3 4310

10 3 4

Оценивание. В тестах с суммарной стоимостью 10 очков $N \leqslant 5$ и сумма длин данных чисел не превышает 19.

3. Делители

1 секунда

50 очков

Написать программу, которая находит наименьшее положительное целое число, у которого есть ровно K различных делителей.

Входные данные. На единственной строке текстового файла jaga.sis находится положительное целое число K.

Выходные данные. На единственную строку текстового файла jaga.val вывести искомое число. Можно считать, что ответ попадает в область значений 64-битного целого числа со знаком.

Пример. jaga.sis

jaga.val

Число 6 делится на 1, 2, 3, 6, и легко проверить, что у всех меньших положительных целых чисел меньше различных делителей.

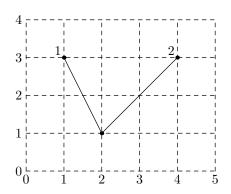
Оценивание. В тестах с суммарной стоимостью 25 очков ответ не превышает $1\,000\,000$. Из них в тестах с суммарной стоимостью 15 очков ответ не превышает $10\,000$.

1. Радиовещание

1 секунда

20 очков

Телекоммуникационная фирма использует для распространения сигнала набор передатчиков. Приёмник клиента автоматически настраивается на тот передатчик, сигнал которого наиболее сильный в точке расположения приёмника. Как известно из физики, интенсивность сигнала падает пропорционально квадрату расстояния между передатчиком и приёмником.


Написать программу, которая принимает местоположения и мощности всех передатчиков и определяет передатчик, на который настроится приёмник, расположенный в заданной точке.

Входные данные. На первой строке текстового файла levi.sis находятся координаты клиента X и Y. На второй строке файла — число передатчиков N ($1 \le N \le 1000$). В каждой из следующих N строк находятся координаты соответствующего передатчика X_i и Y_i , а также его мощность P_i . Все координаты — целые числа с абсолютным значением не более $10\,000$, а мощности передатчиков — положительные целые числа, не превыщающие 1000. Можно считать, что клиент не находится в одной точке ни с одним передатчиком.

Выходные данные. На единственную строку текстового файла levi.val вывести номер того передатчика, сигнал которого наиболее сильный в точке расположения клиента. Если передатчиков с максимальным сигналом несколько, вывести любой из них. Передатчики пронумерованы числами $1 \dots N$ в порядке их появления во входных данных.

Пример.	levi.sis	levi.val
	2 1	2
	2	
	1 3 10	
	4 3 24	

На рисунке снизу видно, что расстояние от клиента до первого передатчика равно $\sqrt{5}$, и поэтому интенсивность его сигнала равна 10/5=2, а расстояние до второго передатчика равно $\sqrt{8}$, и поэтому интенсивность его сигнала равна 24/8=3. Следовательно приёмник настроится на второй передатчик, хоть он и дальше.

Пример. levi.sis levi.val 2 1 2 2 2 1 3 12 4 3 20

2. Филателист 1 секунда 40 очков

У филателиста возникло подозрение, что среди его марок есть два одинаковых. Так как марок много, то искать среди них повторяющиеся вручную тяжело. Вместо этого филателист выложил все марки на стол в несколько рядов, сфотографировал цифровым фотоаппаратом, и надеется теперь использовать для поиска повторов компьютер.

Написать программу, которая проанализирует фотографию и удостоверится, что все марки в наборе уникальны, или, в противном случае, укажет на пару одинаковых марок.

Входные данные. На первой строке текстового файла filp.sis дано количество рядов R ($1 \le R \le 50$) и колонок V ($1 \le V \le 10$) марок. На каждой из следующих $8 \cdot R$ строк записано в точности $8 \cdot V$ символов. Все это представляет из себя изображение выложенных на столе друг рядом с другом марок, где каждой марке соответствует блок из 8×8 символов. Две марки считать одинаковыми, если их изображения идентичны (если при поточечном сопоставлении изображений двух марок, хотя бы один символ различается, марки нужно считать разными). Большие и маленькие буквы считать разными символами.

Выходные данные. Если среди марок нет повторяющихся, в текстовый файл filp.val вывести на единственной строке слово POLE. Если же найдется пара одинаковых марок, вывести на первой строке координаты первой марки в паре, а на второй строке — координаты второй марки. Координаты каждой марки указать в виде двух чисел — ряда и колонки марки на столе. Ряды нумеруются сверху вниз $1\dots R$, а колонки — слева направо $1\dots V$. Можно предполагать, что либо все марки уникальны, либо среди них есть в точности одна пара одинаковых марок.

Пример.

filp.sis
1 3

filp.val

Все марки различны.

Пример.

filp.sis filp.val 2 3 1 2 aaaaaaaabbbbbbbbccccccc 2 3

Марка в 1-м ряду на 2-й колонке такая же, как и марка во 2-м ряду на 3-й колонке.

3. Марафон 1 секунда 40 очков

Зрительные места у трассы, где проводится марафон, пронумерованы $1\dots N$ по направлению от старта к финипу. Часть мест уже занята. K друзей хотят пойти смотреть соревнование вместе, и при этом находиться как можно ближе друг к другу.

Написать программу, которая подберет для друзей наилучшее расположение среди свободных мест. Оценкой качества расположения друзей является разница минимального и максимального номеров занятых группой мест (чем она меньше — тем лучше).

Входные данные. На первой строке текстового файла marp.sis дано общее количество зрительных мест N ($1 \le N \le 1\,000\,000$), количество уже занятых мест M ($0 \le M < N$), и количество друзей K ($1 \le K \le N - M$). На второй строке дано M разделенных пробелами чисел: номера уже занятых зрительных мест в порядке возрастания.

Выходные данные. На единственной строке текстового файла marp.val вывести два целых числа: минимальный и максимальный номера мест, которые должны занять друзья. Если найдется несколько одинаково хороших расположений, вывести то из них, которое ближе к финишу (где используются большие номера мест).

Пример.	marp.sis	marp.val	
	8 4 3	4 7	
	2368		

Друзья должны купить билеты на места 4, 5 и 7 (место 6 уже занято).

Оценивание. В тестах с суммарной стоимостью 30 очков $N \leqslant 30\,000$ и $K \leqslant 300$. Среди них, в тестах с суммарной стоимостью 20 очков $N \leqslant 3000$. А среди них, в свою очередь, в тестах с суммарной стоимостью 10 очков $N \leqslant 300$.