
1	/	3

European	Junior	Olympiad	in	Informatics
26	July	—	1	August	2018
Innopolis,	Russia
day2_3

cycle-sortcycle-sort
Country:	api	-	ISC

Task	F.	Cycle	sort
You	are	given	an	array	of	 	positive	integers	 .	You	can	perform	the
following	operation	any	number	of	times:	select	several	distinct	indices	
()	and	move	the	number	standing	at	the	position	 	to	the	position	 ,
the	number	at	the	position	 	to	the	position	 ,	 ,	the	number	at	the	position	
to	the	position	 .	In	other	words,	the	operation	cyclically	shifts	elements:	

.

For	example,	if	you	have	 ,	an	array	 ,	and
you	choose	three	indices	 ,	 ,	 ,	then	the	resulting	array	would
become	 .

Your	goal	is	to	make	the	array	sorted	in	non-decreasing	order	with	the	minimum
number	of	operations.	The	additional	constraint	is	that	the	sum	of	cycle	lengths	over
all	operations	should	be	less	than	or	equal	to	a	number	 .	If	it's	impossible	to	sort	the
array	while	satisfying	that	constraint,	your	solution	should	report	that	as	well.

Input
The	first	line	of	the	input	contains	two	integers	 	and	 	(,	

),	the	number	of	elements	in	the	array	and	the	upper	bound	on	the
sum	of	cycle	lengths.

The	next	line	contains	 	integers	 ,	the	elements	of	the	array	(
).

Output
If	it's	impossible	to	sort	the	array	using	cycles	of	total	length	not	exceeding	 ,	print	a
single	number	-1.

Otherwise,	print	a	single	number	 ,	the	minimum	number	of	operations	required	to
sort	the	array.	On	the	next	 	lines	print	the	description	of	the	operations	in	the
order	they	are	applied	to	the	array.	The	description	of	 -th	operation	begins	with	a
single	line	containing	one	integer	 	()—the	length	of	the	cycle	(that	is,
the	number	of	selected	indices).	The	next	line	should	contain	 	distinct	integers	

	()—the	indices	themselves.

The	sum	of	lengths	of	these	cycles	should	be	less	than	or	equal	to	 ,	and	the	array
should	be	sorted	after	applying	these	 	operations.

If	there	are	several	possible	answers	with	the	optimal	 ,	print	any	of	them.

n , , … ,a1 a2 an

, , … ,i1 i2 ik

1 ≤ ≤ nij i1 i2
i2 i3 … ik

i1
→ → … →i1 i2 ik i1

n = 4 = 10, = 20, = 30, = 40a1 a2 a3 a4
= 2i1 = 1i2 = 4i3

= 20, = 40, = 30, = 10a1 a2 a3 a4

s

n s 1 ≤ n ≤ 200 000
0 ≤ s ≤ 200 000

n , , … ,a1 a2 an

1 ≤ ≤ai 109

s

q
2 ⋅ q

i
k 1 ≤ k ≤ n

k
, , … ,i1 i2 ik 1 ≤ ≤ nij

s
q

q

2	/	3

Scoring
This	problem	contains	nine	subtasks,	for	each	subtask	you	will	get	the	points	only	if
you	pass	all	the	tests	for	this	subtask.
1.	 (5	points)	 	and	all	elements	of	the	array	are	either	 	or	
2.	 (5	points)	
3.	 (5	points)	All	elements	of	the	array	are	either	 	or	
4.	 (10	points)	The	array	contains	numbers	from	 	to	 	only,	each	number

appears	exactly	once,	
5.	 (10	points)	The	array	contains	numbers	from	 	to	 	only,	each	number

appears	exactly	once,	
6.	 (15	points)	The	array	contains	numbers	from	 	to	 	only,	each	number

appears	exactly	once
7.	 (15	points)	
8.	 (15	points)	
9.	 (20	points)	No	additional	constraints.

Examples

Example	1
Input:

5	5
3	2	3	1	1

Output:

1
5
1	4	2	3	5

In	this	example,	it's	also	possible	to	sort	the	array	with	two	operations	of	total	length
5:	first	apply	the	cycle	 	(of	length	2),	then	apply	the	cycle	

	(of	length	3).	However,	it	would	be	a	wrong	answer	as	you're	asked
to	use	the	minimal	possible	number	of	operations,	which	is	1	in	that	case.

Example	2
Input:

4	3
2	1	4	3

Output:

-1

In	this	example,	it's	possible	to	the	sort	the	array	with	two	cycles	of	total	length	4	(
	and).	However,	it's	impossible	to	achieve	the	same	using

shorter	cycles,	which	is	required	by	 .

n, s ≤ 2 1 2
n ≤ 5

1 2
1 n

s = 2 ⋅ n
1 n

n ≤ 1000
1 n

s = 2 ⋅ n
n ≤ 1000

1 → 4 → 1
2 → 3 → 5 → 2

1 → 2 → 1 3 → 4 → 3
s = 3

3	/	3

Example	3
Input:

2	0
2	2

Output:

0

In	this	example,	the	array	is	already	sorted,	so	no	operations	are	needed.	The	total
length	of	empty	set	of	cycles	is	considered	to	be	zero.

Example	4
Input:

6	9
6	5	4	3	2	1

Output:

2
6
1	6	2	5	3	4
3
3	2	1

Example	5
Input:

6	8
6	5	4	3	2	1

Output:

3
2
3	4
4
1	6	2	5
2
2	1

Notice	that	examples	1	and	3	contain	duplicate	numbers,	so	they	do	not	satisfy	the
requirements	for	subtasks	4,	5	and	6.	Examples	2,	4,	and	5	satisfy	the	requirements
for	subtasks	5	and	6.

