5. МАХ-операции (тах)

3 сек 100 очков

У Юку есть двоичное дерево с N вершинами (которое не обязательно должно быть уравновешено). Вершины дерева пронумерованы $1\dots N$, причём корень дерева имеет номер 1. В каждом листе (концевой вершине) дерева записано целое число. Юку может в каждую из оставшихся (не-листовых) вершин записать на свой выбор либо результат операции MIN либо MAX. Вершина с операцией MIN принимает значение, равное наименьшему из значений её непосредственных потомков, а вершина с операцией MAX принимает наибольшее из значений её потомков. Юку хотел бы узнать для некоторого количества чисел, сколько MAX-операций минимально необходимо для того, чтобы получить в корневой вершине данное или большее число. Напиши программу, которая поможет Юку ответить на этот вопрос.

Входные данные. На первой строке дано количество вершин дерева N ($3 \le N \le 10^5$). На каждой из следующих N-1 строк даны два разделённых пробелом целых числа A_i и B_i ($1 \le A_i, B_i \le N, A_i \ne B_i$), которые обозначают ребро между вершинами A_i и B_i .

Далее идут строки, каждая из котоырх содержит разделённые пробелом два целых числа X_j и Y_j ($1 \le X_j \le N, \ 0 \le Y_j \le 10^7$), где X_j — номер одной из листовых вершин дерева, а Y_j — записанное в этой вершине значение. Таких строк ровно столько, сколько у дерева листьев.

На следующей строке дано количество чисел Q ($1 \leqslant Q \leqslant 5 \cdot 10^5$), которые интересуют Юку. На каждой из последующих Q строк дано одно целое число M_k ($0 \leqslant M_k \leqslant 10^7$), для которого необходимо узнать минимальное количество МАХ-операций.

Выходные данные. Для каждого из интересующих Юку чисел необходимо вывести одну строку. Если соответствующее число M_k или большее возможно получить в корне дерева, вывести минимальное необходимое для этого количество МАХ-операций. Если такое число получить невозможно, вывести -1. Ответы необходимо выводить в том же порядке, в каком соответствующие запросы даны во входных данных.

Пример.	Входные данные 5 1 2 2 3 5 1 4 2 3 7 4 5 5 12 3	Выходные данные 1 0 -1
	10	
	4	
	23	

В первом запросе Юку хотел узнать, сколькими МАХ-операциями можно получить в корне значение 10 или выше. Единственное достаточно большое число есть в листе номер 5 и для того, чтобы его оттуда достать, необходимо поставить МАХ-операцию в вершину 1. Во втором запросе необходимо решить задачу для числа 4. Так как во всех листьях значения выше, то не нужно использовать ни одной операции МАХ. В третьем запросе число 23 выше всех значений в листьях и тем самым недостижимо.

Оценивание. В данном задании тесты разделены на группы. В каждой группе очки получают лишь те решения, которые пройдут все входящие в группу тесты. В группых действют

следующие дополнительные ограничения:

- 1. (20 очков) $N \leqslant 20, \, Q \leqslant 10$ и все $M_k \leqslant 100.$
- 2. (20 очков) $N\leqslant 1\,000$ и $Q\leqslant 1\,000$.
- 3. (20 очков) На каждом уровне дерева кроме первого ровно 2 вершины.
- 4. (20 очков) $Q \leqslant 100$, все $Y_j \leqslant 100$ и все $M_k \leqslant 100$.
- 5. (20 очков) Дополнительные ограничения отсутствуют.