
Kuidas mõista programmi: programmeerimiskeeled,
korrektsus ja abstraktne interpretatsioon

Karoliine Holter

Tartu Ülikool, tarkvarateaduse töörühm

8. veebruar 2026



Minust

2004 Mart Reiniku Kool
2013 Hugo Treffneri Gümnaasium
2016 „Paus“ (Olümpia)
2018 Informaatika BSc (cum laude)

2021 Tarkvaratehnika MSc (cum laude)

2023 Informaatika nooremteadur

http://www.awshop.xyz/image/cache/catalog/opidtootad-500x500-0.jpg

1/21



Tarkvarateadus

Programmeerimiskeelte uurimine (ja loomine)

Programmeerimiskeeli nähakse keskse rolliga arvutuslike probleemide lahendamisel
ning neid kasutatakse vahendina inimkeele „tõlkimiseks“ masinkoodiks.

Väljendusrikkus arendatakse uusi keelelisi võimalusi, et lahendada aina keerukamaid
arvutuslikke probleeme üldiselt ja selgelt.

Suhtluse korrektsus analüüsitakse, kas ja millal programmid (ka olemasolevad ja juba
kasutusel olevad) käituvad korrektselt ning vastavad sellele, mida
nendelt oodatakse.

2/21



Miks on programmide korrektsus niivõrd oluline?

• Tüüpilised näited on raketid, lennukid
või tuumaelektrijaamad.
• Therac-25 kiiritusravimasin:

andmejooksu tõttu inimestele üledoos
• Aga väiksemad asjad meie elus . . .
• Kui palju on „kehv programmeerimine“

Sinule haiget teinud?

3/21



Miks on programmide korrektsus niivõrd oluline?

• Tüüpilised näited on raketid, lennukid
või tuumaelektrijaamad.
• Therac-25 kiiritusravimasin:

andmejooksu tõttu inimestele üledoos
• Aga väiksemad asjad meie elus . . .
• Kui palju on „kehv programmeerimine“

Sinule haiget teinud?

3/21



Miks on programmide korrektsus niivõrd oluline?

• Tüüpilised näited on raketid, lennukid
või tuumaelektrijaamad.
• Therac-25 kiiritusravimasin:

andmejooksu tõttu inimestele üledoos
• Aga väiksemad asjad meie elus . . .
• Kui palju on „kehv programmeerimine“

Sinule haiget teinud?

3/21



Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon

2. Formaalne semantika
3. Staatiline arutluskäik
4. Dünaamiline arutluskäik
5. Implementatsioon

Keele spetsifikatsioon

• süntaks - mis sõnad on lubatud?
if 5 > 2:

print("Viis on suurem kui kaks")

• semantika - mida programm tegelikult tähendab?
x = x + 1

„Programm ei ole lihtsalt sümbolite jada, mida
niisama stackoverflow’st keelemudelist kopeerida.“

4/21



Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon

2. Formaalne semantika
3. Staatiline arutluskäik
4. Dünaamiline arutluskäik
5. Implementatsioon

Keele spetsifikatsioon

• süntaks - mis sõnad on lubatud?
if 5 > 2:

print("Viis on suurem kui kaks")
• semantika - mida programm tegelikult tähendab?
x = x + 1

„Programm ei ole lihtsalt sümbolite jada, mida
niisama stackoverflow’st keelemudelist kopeerida.“

4/21



Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon

2. Formaalne semantika
3. Staatiline arutluskäik
4. Dünaamiline arutluskäik
5. Implementatsioon

Keele spetsifikatsioon

• süntaks - mis sõnad on lubatud?
if 5 > 2:

print("Viis on suurem kui kaks")
• semantika - mida programm tegelikult tähendab?
x = x + 1

„Programm ei ole lihtsalt sümbolite jada, mida
niisama stackoverflow’st keelemudelist kopeerida.“

4/21



Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon
2. Formaalne semantika

3. Staatiline arutluskäik
4. Dünaamiline arutluskäik
5. Implementatsioon

Formaalne semantika

Leiame arvutuste taga peituvaid
matemaatilisi struktuure

• kuidas programm suhtleb keskkonnaga?
• programmide teisendamine
• kas arvutuste järjekord loeb?
• jpm.

4/21



Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon
2. Formaalne semantika

3. Staatiline arutluskäik
4. Dünaamiline arutluskäik
5. Implementatsioon

Formaalne semantika

Leiame arvutuste taga peituvaid
matemaatilisi struktuure
• kuidas programm suhtleb keskkonnaga?

• programmide teisendamine
• kas arvutuste järjekord loeb?
• jpm.

4/21



Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon
2. Formaalne semantika

3. Staatiline arutluskäik
4. Dünaamiline arutluskäik
5. Implementatsioon

Formaalne semantika

Leiame arvutuste taga peituvaid
matemaatilisi struktuure
• kuidas programm suhtleb keskkonnaga?
• programmide teisendamine

• kas arvutuste järjekord loeb?
• jpm.

4/21



Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon
2. Formaalne semantika

3. Staatiline arutluskäik
4. Dünaamiline arutluskäik
5. Implementatsioon

Formaalne semantika

Leiame arvutuste taga peituvaid
matemaatilisi struktuure
• kuidas programm suhtleb keskkonnaga?
• programmide teisendamine
• kas arvutuste järjekord loeb?
• jpm.

4/21



Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon
2. Formaalne semantika
3. Staatiline arutluskäik

4. Dünaamiline arutluskäik
5. Implementatsioon

Staatiline arutluskäik

Arutleme programmi üle ilma seda käivitamata
• tüübid
x = ”abc” + 1

• staatiline analüüs
x = [1,2,3]
x[4]

4/21



Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon
2. Formaalne semantika
3. Staatiline arutluskäik

4. Dünaamiline arutluskäik
5. Implementatsioon

Staatiline arutluskäik

Arutleme programmi üle ilma seda käivitamata
• tüübid
x = ”abc” + 1

• staatiline analüüs
x = [1,2,3]
x[4]

4/21



Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon
2. Formaalne semantika
3. Staatiline arutluskäik
4. Dünaamiline arutluskäik

5. Implementatsioon

Dünaamiline arutluskäik

Uurime programmi käitumist käivitamise ajal
• testid

assert summa(2,3) == 5

• veateated

4/21



Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon
2. Formaalne semantika
3. Staatiline arutluskäik
4. Dünaamiline arutluskäik

5. Implementatsioon

Dünaamiline arutluskäik

Uurime programmi käitumist käivitamise ajal
• testid

assert summa(2,3) == 5
• veateated

4/21



Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon
2. Formaalne semantika
3. Staatiline arutluskäik
4. Dünaamiline arutluskäik
5. Implementatsioon

Implementatsioon

Kuidas programm masinas tööle pannakse?
• interpreteerimine
• kompileerimine

4/21



Interpretatsioon

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub sisendiga 10?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub sisendiga 10?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub sisendiga 10?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub sisendiga 10?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub sisendiga 10?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub sisendiga 10?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub sisendiga -5?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub sisendiga -5?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub sisendiga -5?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub sisendiga -5?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub sisendiga -5?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub sisendiga -5?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub sisendiga -5?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Interpretatsioon, mis juhtub teiste sisenditega?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .

5/21



Abstraktne interpretatsioon, sisend [-10, 10]

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

x = input() [-10,10]

3

x > 5 [6,10]

6

x = 2 * x [12,20]

5

[-10,5] x <= 5

[-5,10] x = x + 5

L

print(20 / x) [-5,20]

ERROR

6/21



Abstraktne interpretatsioon, sisend [-10, 10]

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

x = input() [-10,10]

3

x > 5 [6,10]

6

x = 2 * x [12,20]

5

[-10,5] x <= 5

[-5,10] x = x + 5

L

print(20 / x) [-5,20]

ERROR

6/21



Abstraktne interpretatsioon, sisend [-10, 10]

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

x = input() [-10,10]

3

x > 5 [6,10]

6

x = 2 * x [12,20]

5

[-10,5] x <= 5

[-5,10] x = x + 5

L

print(20 / x) [-5,20]

ERROR

6/21



Abstraktne interpretatsioon, sisend [-10, 10]

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

x = input() [-10,10]

3

x > 5 [6,10]

6

x = 2 * x [12,20]

5

[-10,5] x <= 5

[-5,10] x = x + 5

L

print(20 / x) [-5,20]

ERROR

6/21



Abstraktne interpretatsioon, sisend [-10, 10]

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

x = input() [-10,10]

3

x > 5 [6,10]

6

x = 2 * x [12,20]

5

[-10,5] x <= 5

[-5,10] x = x + 5

L

print(20 / x) [-5,20]

ERROR

6/21



Abstraktne interpretatsioon, sisend [-10, 10]

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

x = input() [-10,10]

3

x > 5 [6,10]

6

x = 2 * x [12,20]

5

[-10,5] x <= 5

[-5,10] x = x + 5

L

print(20 / x) [-5,20]

ERROR

6/21



Abstraktne interpretatsioon, sisend [-10, 10]

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

x = input() [-10,10]

3

x > 5 [6,10]

6

x = 2 * x [12,20]

5

[-10,5] x <= 5

[-5,10] x = x + 5

L

print(20 / x) [-5,20]

ERROR

6/21



Programmide semantiline analüüs

Mudelkontroll

{{x 7→ 4}, {x 7→ 5}, {x 7→ 6}, . . . } x=x+1−−−−→

{{x 7→ 5}, {x 7→ 6}, {x 7→ 7}, . . . }

Abstraktne interpretatsioon

{x 7→ [4,∞]} x=x+1−−−−→ {x 7→ [5,∞]}

7/21



Programmide semantiline analüüs

Mudelkontroll

{{x 7→ 4}, {x 7→ 5}, {x 7→ 6}, . . . } x=x+1−−−−→ {{x 7→ 5}, {x 7→ 6}, {x 7→ 7}, . . . }

Abstraktne interpretatsioon

{x 7→ [4,∞]} x=x+1−−−−→ {x 7→ [5,∞]}

7/21



Programmide semantiline analüüs

Mudelkontroll

{{x 7→ 4}, {x 7→ 5}, {x 7→ 6}, . . . } x=x+1−−−−→ {{x 7→ 5}, {x 7→ 6}, {x 7→ 7}, . . . }

Abstraktne interpretatsioon

{x 7→ [4,∞]} x=x+1−−−−→

{x 7→ [5,∞]}

7/21



Programmide semantiline analüüs

Mudelkontroll

{{x 7→ 4}, {x 7→ 5}, {x 7→ 6}, . . . } x=x+1−−−−→ {{x 7→ 5}, {x 7→ 6}, {x 7→ 7}, . . . }

Abstraktne interpretatsioon

{x 7→ [4,∞]} x=x+1−−−−→ {x 7→ [5,∞]}

7/21



Teine programm

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B

C

D

E

F

G

H

x = input()

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

8/21



Teine programm sisendiga [−10, 10]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B

[−10, 10]

C

[6, 10]

D

[12, 20]

E

[−10, 5]

F

[4, 19]

G

[4, 20]

H

x = input() ← [−10, 10]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [1, 5]

9/21



Teine programm sisendiga [−10, 10]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−10, 10]

C

[6, 10]

D

[12, 20]

E

[−10, 5]

F

[4, 19]

G

[4, 20]

H

x = input() ← [−10, 10]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [1, 5]

9/21



Teine programm sisendiga [−10, 10]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−10, 10]

C [6, 10]

D

[12, 20]

E

[−10, 5]

F

[4, 19]

G

[4, 20]

H

x = input() ← [−10, 10]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [1, 5]

9/21



Teine programm sisendiga [−10, 10]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−10, 10]

C [6, 10]

D [12, 20]

E

[−10, 5]

F

[4, 19]

G

[4, 20]

H

x = input() ← [−10, 10]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [1, 5]

9/21



Teine programm sisendiga [−10, 10]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−10, 10]

C [6, 10]

D [12, 20]

E[−10, 5]

F

[4, 19]

G

[4, 20]

H

x = input() ← [−10, 10]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [1, 5]

9/21



Teine programm sisendiga [−10, 10]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−10, 10]

C [6, 10]

D [12, 20]

E[−10, 5]

F[4, 19]

G

[4, 20]

H

x = input() ← [−10, 10]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [1, 5]

9/21



Teine programm sisendiga [−10, 10]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−10, 10]

C [6, 10]

D [12, 20]

E[−10, 5]

F[4, 19]

G [4, 20]

H

x = input() ← [−10, 10]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [1, 5]

9/21



Teine programm sisendiga [−10, 10]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−10, 10]

C [6, 10]

D [12, 20]

E[−10, 5]

F[4, 19]

G [4, 20]

H

x = input() ← [−10, 10]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x) → [1, 5]

9/21



Teine programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B

[−∞,∞]

C

[6,∞]

D

[12,∞]

E

[−∞, 5]

F

[4,∞]

G

[4,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [0, 5]

10/21



Teine programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−∞,∞]

C

[6,∞]

D

[12,∞]

E

[−∞, 5]

F

[4,∞]

G

[4,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [0, 5]

10/21



Teine programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−∞,∞]

C [6,∞]

D

[12,∞]

E

[−∞, 5]

F

[4,∞]

G

[4,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [0, 5]

10/21



Teine programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−∞,∞]

C [6,∞]

D [12,∞]

E

[−∞, 5]

F

[4,∞]

G

[4,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [0, 5]

10/21



Teine programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−∞,∞]

C [6,∞]

D [12,∞]

E[−∞, 5]

F

[4,∞]

G

[4,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [0, 5]

10/21



Teine programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−∞,∞]

C [6,∞]

D [12,∞]

E[−∞, 5]

F[4,∞]

G

[4,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [0, 5]

10/21



Teine programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−∞,∞]

C [6,∞]

D [12,∞]

E[−∞, 5]

F[4,∞]

G [4,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [0, 5]

10/21



Teine programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B [−∞,∞]

C [6,∞]

D [12,∞]

E[−∞, 5]

F[4,∞]

G [4,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x) → [0, 5]

10/21



Kolmas programm

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x - 9
6 print(20 / x)

A

B

C

D

E

F

[−∞,−4]

G

H

x = input()

x > 5

x = 2 * x

x <= 5

x = x - 9

print(20 / x)

11/21



Kolmas programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x - 9
6 print(20 / x)

A

B

[−∞,∞]

C

[6,∞]

D

[12,∞]

E

[−∞, 5]

F

[−∞,−4]

G

[−∞,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = x - 9

print(20 / x)

ERROR?

12/21



Kolmas programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x - 9
6 print(20 / x)

A

B [−∞,∞]

C

[6,∞]

D

[12,∞]

E

[−∞, 5]

F

[−∞,−4]

G

[−∞,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = x - 9

print(20 / x)

ERROR?

12/21



Kolmas programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x - 9
6 print(20 / x)

A

B [−∞,∞]

C [6,∞]

D

[12,∞]

E

[−∞, 5]

F

[−∞,−4]

G

[−∞,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = x - 9

print(20 / x)

ERROR?

12/21



Kolmas programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x - 9
6 print(20 / x)

A

B [−∞,∞]

C [6,∞]

D [12,∞]

E

[−∞, 5]

F

[−∞,−4]

G

[−∞,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = x - 9

print(20 / x)

ERROR?

12/21



Kolmas programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x - 9
6 print(20 / x)

A

B [−∞,∞]

C [6,∞]

D [12,∞]

E[−∞, 5]

F

[−∞,−4]

G

[−∞,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = x - 9

print(20 / x)

ERROR?

12/21



Kolmas programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x - 9
6 print(20 / x)

A

B [−∞,∞]

C [6,∞]

D [12,∞]

E[−∞, 5]

F[−∞,−4]

G

[−∞,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = x - 9

print(20 / x)

ERROR?

12/21



Kolmas programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x - 9
6 print(20 / x)

A

B [−∞,∞]

C [6,∞]

D [12,∞]

E[−∞, 5]

F[−∞,−4]

G [−∞,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = x - 9

print(20 / x)

ERROR?

12/21



Kolmas programm sisendiga [−∞,∞]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x - 9
6 print(20 / x)

A

B [−∞,∞]

C [6,∞]

D [12,∞]

E[−∞, 5]

F[−∞,−4]

G [−∞,∞]

H

x = input() ← [−∞,∞]

x > 5

x = 2 * x

x <= 5

x = x - 9

print(20 / x) ERROR?

12/21



Abstraktne interpretatsioon

Korrektne

Kui päriselt võib tekkida viga, siis abstraktselt tekib viga.

ehk
Kui abstraktselt ei teki viga, siis päriselt ei saa viga tekkida.

Tõestab programmi korrektsuse!

Ebatäpne

Kui abstraktselt tekib viga, siis päriselt ei pruugi viga tekkida.

Eksib, aga ainult ühte pidi!

13/21



Abstraktne interpretatsioon

Korrektne

Kui päriselt võib tekkida viga, siis abstraktselt tekib viga.

ehk
Kui abstraktselt ei teki viga, siis päriselt ei saa viga tekkida.

Tõestab programmi korrektsuse!

Ebatäpne

Kui abstraktselt tekib viga, siis päriselt ei pruugi viga tekkida.

Eksib, aga ainult ühte pidi!

13/21



Programmi omadused, sh. andmejooksud

Eesmärk: näidata, et programmi kõik täitmised omavad mingit kindlat omadust, näiteks
• Ei esine nulliga jagamist
• Lõpetab alati töö (termineerub)
• Ei saa esineda andmejookse
• jpm.

Andmejooks
• On ohtlik olukord paralleelselt töötavates programmides
• Kui kaks arvutust võivad omavahel kooskõlastamatult andmeid näppida, siis . . .
• võib väga halvasti lõppeda!

14/21



Programmi omadused, sh. andmejooksud

Eesmärk: näidata, et programmi kõik täitmised omavad mingit kindlat omadust, näiteks
• Ei esine nulliga jagamist
• Lõpetab alati töö (termineerub)
• Ei saa esineda andmejookse
• jpm.

Andmejooks
• On ohtlik olukord paralleelselt töötavates programmides
• Kui kaks arvutust võivad omavahel kooskõlastamatult andmeid näppida, siis . . .
• võib väga halvasti lõppeda!

14/21



Goblint

• Paralleelsete C-programmide analüsaator

• Abstraktsel interpreteerimisel põhinev
• Eriline fookus andmejooksudel
• Tartu Ülikooli ja Müncheni Tehnikaülikooli

koostöö
• Mitmekordne andmejooksude kategooria võitja

rahvusvahelisel verifitseerimisvõistlusel
• Andmejooksude maailmameister

(Wettlaufweltmeister)

GOBLINT

15/21



Goblint

• Paralleelsete C-programmide analüsaator
• Abstraktsel interpreteerimisel põhinev

• Eriline fookus andmejooksudel
• Tartu Ülikooli ja Müncheni Tehnikaülikooli

koostöö
• Mitmekordne andmejooksude kategooria võitja

rahvusvahelisel verifitseerimisvõistlusel
• Andmejooksude maailmameister

(Wettlaufweltmeister)

GOBLINT

15/21



Goblint

• Paralleelsete C-programmide analüsaator
• Abstraktsel interpreteerimisel põhinev
• Eriline fookus andmejooksudel

• Tartu Ülikooli ja Müncheni Tehnikaülikooli
koostöö
• Mitmekordne andmejooksude kategooria võitja

rahvusvahelisel verifitseerimisvõistlusel
• Andmejooksude maailmameister

(Wettlaufweltmeister)

GOBLINT

15/21



Goblint

• Paralleelsete C-programmide analüsaator
• Abstraktsel interpreteerimisel põhinev
• Eriline fookus andmejooksudel
• Tartu Ülikooli ja Müncheni Tehnikaülikooli

koostöö

• Mitmekordne andmejooksude kategooria võitja
rahvusvahelisel verifitseerimisvõistlusel
• Andmejooksude maailmameister

(Wettlaufweltmeister)

GOBLINT

15/21



Goblint

• Paralleelsete C-programmide analüsaator
• Abstraktsel interpreteerimisel põhinev
• Eriline fookus andmejooksudel
• Tartu Ülikooli ja Müncheni Tehnikaülikooli

koostöö
• Mitmekordne andmejooksude kategooria võitja

rahvusvahelisel verifitseerimisvõistlusel

• Andmejooksude maailmameister
(Wettlaufweltmeister)

GOBLINT

15/21



Goblint

• Paralleelsete C-programmide analüsaator
• Abstraktsel interpreteerimisel põhinev
• Eriline fookus andmejooksudel
• Tartu Ülikooli ja Müncheni Tehnikaülikooli

koostöö
• Mitmekordne andmejooksude kategooria võitja

rahvusvahelisel verifitseerimisvõistlusel
• Andmejooksude maailmameister

(Wettlaufweltmeister)

GOBLINT

15/21



Competition on Software Verification (SV-COMP)

Iga-aastane rahvusvaheline võistlus, kus võrreldakse ja
hinnatakse tarkvara verifitseerimise tööriistu.

• Osalejad esitavad oma tööriistad, mis kontrollivad programmide
korrektsust erinevatel meetoditel
• Tööriistu jooksutatakse suurel hulgal erinevatel programmidel

16/21



Competition on Software Verification (SV-COMP)

Iga-aastane rahvusvaheline võistlus, kus võrreldakse ja
hinnatakse tarkvara verifitseerimise tööriistu.

• Osalejad esitavad oma tööriistad, mis kontrollivad programmide
korrektsust erinevatel meetoditel

• Tööriistu jooksutatakse suurel hulgal erinevatel programmidel

16/21



Competition on Software Verification (SV-COMP)

Iga-aastane rahvusvaheline võistlus, kus võrreldakse ja
hinnatakse tarkvara verifitseerimise tööriistu.

• Osalejad esitavad oma tööriistad, mis kontrollivad programmide
korrektsust erinevatel meetoditel
• Tööriistu jooksutatakse suurel hulgal erinevatel programmidel

16/21



Competition on Software Verification (SV-COMP)

Iga-aastane rahvusvaheline võistlus, kus võrreldakse ja
hinnatakse tarkvara verifitseerimise tööriistu.

Võistluskategooriad:
• ReachSafety
• MemSafety
• Concurrency
• NoOverflows
• Termination
• SoftwareSystems

Punktisüsteem:

vigane korrektne

õige vastus +1 +2

vale vastus -16 -32

17/21



Competition on Software Verification (SV-COMP)

Iga-aastane rahvusvaheline võistlus, kus võrreldakse ja
hinnatakse tarkvara verifitseerimise tööriistu.

Võistluskategooriad:
• ReachSafety
• MemSafety
• Concurrency
• NoOverflows
• Termination
• SoftwareSystems

Punktisüsteem:

vigane korrektne

õige vastus +1 +2

vale vastus -16 -32

17/21



Verifitseerimisvõistlusest reaalsuseni

Competition on Software Verification (SV-COMP), Dirk Beyer: SV-COMP = F1

GOBLINT

Matti Blume: Mercedes-Benz, Techno-Classica 2018, Essen

18/21



Abstraktse interpretatsiooni rakendusi teistes valdkondades

19/21



Mida endaga kaasa võtta

• Süntaktiliselt korrektne programm võib siiski oodatust valesti käituda
• Testid ei anna 100% garantiid
• Semantika aitab mõista programmi tähendust
• Arusaamine on oluline
• Mõningaid programmi omadusi saab tõestada, mitte ainult testida

20/21



Ootame teid väga Tartu Ülikooli

Loodus-ja täppisteaduste valdkonna stipendiumid üle-eestiliste
aineolümpiaadide parimatele 300 eurot kuus

• 11.-12. klassi arvestuses viie parima hulgas kolme aasta jooksul
• rahvusvahelistel olümpiaadidel osalemine
• aineolümpiaadid: astronoomia lahtine võistlus, bioloogia, füüsika, keemia, geograafia,

maateadused, informaatika, matemaatika

21/21



Aitäh!


	Teine programm

