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Tarkvarateadus

Programmeerimiskeelte uurimine (ja loomine)

Programmeerimiskeeli nähakse keskse rolliga arvutuslike probleemide lahendamisel
ning neid kasutatakse vahendina inimkeele „tõlkimiseks“ masinkoodiks.

Väljendusrikkus arendatakse uusi keelelisi võimalusi, et lahendada aina keerukamaid
arvutuslikke probleeme üldiselt ja selgelt.

Suhtluse korrektsus analüüsitakse, kas ja millal programmid (ka olemasolevad ja juba
kasutusel olevad) käituvad korrektselt ning vastavad sellele, mida
nendelt oodatakse.
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Miks on programmide korrektsus niivõrd oluline?

• Tüüpilised näited on raketid, lennukid
või tuumaelektrijaamad.
• Therac-25 kiiritusravimasin:

andmejooksu tõttu inimestele üledoos
• Aga väiksemad asjad meie elus . . .
• Kui palju on „kehv programmeerimine“

Sinule haiget teinud?
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Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon

2. Formaalne semantika
3. Staatiline arutluskäik
4. Dünaamiline arutluskäik
5. Implementatsioon

Keele spetsifikatsioon

• süntaks - mis sõnad on lubatud?
if 5 > 2:

print("Viis on suurem kui kaks")

• semantika - mida programm tegelikult tähendab?
x = x + 1

„Programm ei ole lihtsalt sümbolite jada, mida
niisama stackoverflow’st keelemudelist kopeerida.“
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Formaalne semantika

Leiame arvutuste taga peituvaid
matemaatilisi struktuure

• kuidas programm suhtleb keskkonnaga?
• programmide teisendamine
• kas arvutuste järjekord loeb?
• jpm.
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Staatiline arutluskäik

Arutleme programmi üle ilma seda käivitamata
• tüübid
x = ”abc” + 1

• staatiline analüüs
x = [1,2,3]
x[4]
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Dünaamiline arutluskäik

Uurime programmi käitumist käivitamise ajal
• testid

assert summa(2,3) == 5

• veateated
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Programmeerimiskeelte põhilised uurimisvaldkonnad

1. Keele spetsifikatsioon
2. Formaalne semantika
3. Staatiline arutluskäik
4. Dünaamiline arutluskäik
5. Implementatsioon

Implementatsioon

Kuidas programm masinas tööle pannakse?
• interpreteerimine
• kompileerimine
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Interpretatsioon

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

3

6

L

x = 10

10 > 5 (?)

x = 20 (2 * 10)

print(1) (20 / 20)

1

2

5

6

L

x = -5

-5 > 5 (?)

x = 0 (-5 + 5)

print(20 / 0)

ERROR

. . .
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Interpretatsioon, mis juhtub sisendiga 10?
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Interpretatsioon, mis juhtub sisendiga -5?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)
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Interpretatsioon, mis juhtub teiste sisenditega?

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)
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Abstraktne interpretatsioon, sisend [-10, 10]

1 def fun(x):
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x + 5
6 print(20 / x)

1

2

x = input() [-10,10]

3

x > 5 [6,10]

6

x = 2 * x [12,20]

5

[-10,5] x <= 5

[-5,10] x = x + 5

L

print(20 / x) [-5,20]

ERROR
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Programmide semantiline analüüs

Mudelkontroll

{{x 7→ 4}, {x 7→ 5}, {x 7→ 6}, . . . } x=x+1−−−−→

{{x 7→ 5}, {x 7→ 6}, {x 7→ 7}, . . . }

Abstraktne interpretatsioon

{x 7→ [4,∞]} x=x+1−−−−→ {x 7→ [5,∞]}
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Teine programm

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B

C

D

E

F

G

H

x = input()

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)
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Teine programm sisendiga [−10, 10]

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = 9 - x
6 print(20 / x)

A

B

[−10, 10]

C

[6, 10]

D

[12, 20]

E

[−10, 5]

F

[4, 19]

G

[4, 20]

H

x = input() ← [−10, 10]

x > 5

x = 2 * x

x <= 5

x = 9 - x

print(20 / x)

→ [1, 5]
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Kolmas programm

1 x = input()
2 if x > 5:
3 x = 2 * x
4 else:
5 x = x - 9
6 print(20 / x)
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D
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F
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G

H
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x > 5

x = 2 * x

x <= 5

x = x - 9

print(20 / x)
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Abstraktne interpretatsioon

Korrektne

Kui päriselt võib tekkida viga, siis abstraktselt tekib viga.

ehk
Kui abstraktselt ei teki viga, siis päriselt ei saa viga tekkida.

Tõestab programmi korrektsuse!

Ebatäpne

Kui abstraktselt tekib viga, siis päriselt ei pruugi viga tekkida.

Eksib, aga ainult ühte pidi!
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Programmi omadused, sh. andmejooksud

Eesmärk: näidata, et programmi kõik täitmised omavad mingit kindlat omadust, näiteks
• Ei esine nulliga jagamist
• Lõpetab alati töö (termineerub)
• Ei saa esineda andmejookse
• jpm.

Andmejooks
• On ohtlik olukord paralleelselt töötavates programmides
• Kui kaks arvutust võivad omavahel kooskõlastamatult andmeid näppida, siis . . .
• võib väga halvasti lõppeda!
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Goblint

• Paralleelsete C-programmide analüsaator

• Abstraktsel interpreteerimisel põhinev
• Eriline fookus andmejooksudel
• Tartu Ülikooli ja Müncheni Tehnikaülikooli

koostöö
• Mitmekordne andmejooksude kategooria võitja

rahvusvahelisel verifitseerimisvõistlusel
• Andmejooksude maailmameister

(Wettlaufweltmeister)

GOBLINT
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Competition on Software Verification (SV-COMP)

Iga-aastane rahvusvaheline võistlus, kus võrreldakse ja
hinnatakse tarkvara verifitseerimise tööriistu.

• Osalejad esitavad oma tööriistad, mis kontrollivad programmide
korrektsust erinevatel meetoditel
• Tööriistu jooksutatakse suurel hulgal erinevatel programmidel
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Võistluskategooriad:
• ReachSafety
• MemSafety
• Concurrency
• NoOverflows
• Termination
• SoftwareSystems

Punktisüsteem:

vigane korrektne

õige vastus +1 +2

vale vastus -16 -32
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Verifitseerimisvõistlusest reaalsuseni

Competition on Software Verification (SV-COMP), Dirk Beyer: SV-COMP = F1

GOBLINT

Matti Blume: Mercedes-Benz, Techno-Classica 2018, Essen
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Abstraktse interpretatsiooni rakendusi teistes valdkondades
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Mida endaga kaasa võtta

• Süntaktiliselt korrektne programm võib siiski oodatust valesti käituda
• Testid ei anna 100% garantiid
• Semantika aitab mõista programmi tähendust
• Arusaamine on oluline
• Mõningaid programmi omadusi saab tõestada, mitte ainult testida
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Ootame teid väga Tartu Ülikooli

Loodus-ja täppisteaduste valdkonna stipendiumid üle-eestiliste
aineolümpiaadide parimatele 300 eurot kuus

• 11.-12. klassi arvestuses viie parima hulgas kolme aasta jooksul
• rahvusvahelistel olümpiaadidel osalemine
• aineolümpiaadid: astronoomia lahtine võistlus, bioloogia, füüsika, keemia, geograafia,

maateadused, informaatika, matemaatika
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Aitäh!
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